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Two different techniques for the analysis of nonlinear, periodic eddy-current problems are compared using a 3-dimensional 

benchmark problem. The methods are the parallel time periodic-finite element method and the harmonic balance fixed-point 
technique. 
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I. INTRODUCTION 

HE TOPIC OF this investigation is to validate various 
methods for the finite element analysis of nonlinear, 3-

dimensional eddy-current problems in which steady state 
solutions are of interest. For this reason a basic single phase 
transformer enclosed by a steel tank has been modeled. On 
each limb of the core there is half of the primary and 
secondary winding. To be as close to a practical application as 
possible, the transformer primary winding is voltage driven. 
Due to the highly permeable materials of the transformer one 
has to deal with a nonlinear problem. The occurring time-
varying magnetic field induces eddy-currents in the tank walls 
and hence additional losses. In this work the parallel time 
periodic-finite element method (parallel TPFEM) [1], [2] and 
the harmonic balance fixed-point technique (HBFP) [3]-[6] are 
compared. 

II. FEM FORMULATION AND MODELLING 

A. Parallel Time-Periodic Finite-Element Method 

In case of the parallel TPFEM method, applying Galerkin 
techniques to the differential equations resulting from the A-V 
formulation, one obtains a system of nonlinear ordinary 
differential equations: 

( )
d

dt
 S x C x f . (1)

The matrix S is nonlinear due to its dependence on the 
unknown vector x and hence on µ, C is a constant coefficient 
matrix, f is the right-hand-side vector. 

By considering time periodic conditions i i n x x , all the 

nonlinear equations for one or half period are written as 
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where n is the number of time steps in a (half) period, Δt is the 
time interval, the subscript indicates the time step, and the 
signs − and + in (2) correspond to the ordinary and half time-
periodic conditions, respectively. In the parallel TPFEM 
[1], [2], the large nonlinear system of equations (2) is solved 
by using parallel computing with pure message passing 
interface (MPI) programming.  

Adopting the Newton-Raphson (NR) method as a nonlinear 
iteration method, the linearized equations of the TPFEM can 
be written as 
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where xi is the increment of xi and Gi is the residual. For 
solving the nonsymmetric linear system (3), we adopt the 
BiCGstab2 method and the localized ILU preconditioning.  

B. Harmonic Balance Fixed-Point Method 

In case of the harmonic balance fixed-point method [3], [4], 
applying Galerkin techniques to the differential equations 
resulting from the , T  formulation, one obtains a system 

of nonlinear, ordinary differential equations of the form 

 ( ) ( )
d

dt
  S x C x f . (5)

S depends on the resistivity ρ and is hence independent of x 
and time t. The mass matrix C depends on the permeability μ 
and hence on x and t. The vector x gathers the unknowns, f is 
the right hand side vector. Using the HBFP technique [5], the 
equation system becomes 
 

    ( ) ( 1) ( ) ( ) ( )( )
FP FP

s s s s s
m mjm jm          S C X C x fF , (6)
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